Arianto Budi Santoso, Endra Triwisesa


High-frequency measurement provides a sophisticated insight in capturing environmental pattern. Compared to traditional discrete measurement, high-frequency sensors allow better understanding of any processes particularly those with temporal scale characteristics. Lake metabolism is one of the exemplars getting advantage of such better resolution measurement. The dynamics of dissolved oxygen concentration (DO) observed in hourly manner, even in minutes, may explain the balance of photosynthetic activity as expressed by gross primary production (GPP) and respiration (R), and atmospheric exchange. Using a coupled thermistor-chain and oxygen sensor, we computed lake metabolism of the eutrophic Lake Maninjau. Characterized by high phytoplankton productivity fueled by the abundance of nutrient availability, DO concentration in Lake Maninjau is likely to be supersaturated. On the other hand, floating cage aquaculture operated in the lake may have a consequence in increasing water column heterotrophy, oxygen demanding community. Through a simple mathematical model we revealed that water column respiration in Lake Maninjau is higher than gross primary production (R > GPP) with an average of 12.1 mg O2 L-1 day-1 and 9.0 mg O2 L-1 day-1, respectively. Our findings highlight that as heterotrophy in eutrophic lakes may relatively be high, oxygen depletion in the water column may occur in any instance, especially in lakes where dense floating cage aquaculture is in place.

Keywords: lake metabolism, dissolved oxygen, high-frequency monitoring, heterotrophy


lake metabolism, dissolved oxygen, high frequency monitoring, heterotrophy

Full Text:



Antenucci JP, Meng K, Imberger HSEJ. 2013. The importance of transport processes and spatial gradients on in situ estimates of lake metabolism. Hydrobiologia 700: 9-21. DOI: 10.1007/s10750-012-1212-z

Benson BB, Krause D. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620-632. DOI: 10.4319/lo.1984.29.3.0620

Benson BJ, Bond BJ, Hamilton MP, Monson RK, Han R. 2010. Perspectives on next-generation technology for environmental sensor networks. Frontiers in Ecology and the Environment 8: 193-200. DOI: 10.1890/080130

Britton CM, Dodd JD. 1976. Relationships of Photosynthetically Active Radiation. Agricultural Meteorology 17: 1-7. DOI:

Coloso JJ, Cole JJ, Pace ML. 2011. Short-term variation in thermal stratification complicates estimation of lake metabolism. Aquatic Sciences 73: 305-315. DOI: 10.1007/s00027-010-0177-0

Crusius J, Wanninkhof R. 2003. Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48: 1010-1017. DOI: 10.4319/lo.2003.48.3.1010

del Giorgio PA, Williams PJLB 2005. The global significance of respiration in aquatic ecosystems: From single cells to the biosphere, p. 267-303. In del Giorgio PA and Williams PJLB (eds). Respiration in aquatic ecosystems. Oxford Univ. Press.

del Giorgio PA, Cole JJ, Caraco NF, Peters RH. 1999. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80: 1422-1431

Dugan HA, Iestyn Woolway R, Santoso AB, Corman JR, Jaimes A, Nodine ER, Patil VP, Zwart JA, Brentrup JA, Hetherington AL, Oliver SK, Read JS, Winters KM, Hanson PC, Read EK, Winslow LA, Weathers KC. 2016. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes. Inland Waters 6: 581-592. DOI: 10.5268/IW-6.4.836

Fukushima T, Matsushita B, Subehi L, Setiawan F, Wibowo H. 2017. Will hypolimnetic waters become anoxic in all deep tropical lakes? Nature Publishing Group 1-8. DOI: 10.1038/srep45320

Gondwe MJ, Guildford SJ, Hecky RE. 2012. Tracing the flux of aquaculture-derived organic wastes in the southeast arm of Lake Malawi using carbon and nitrogen stable isotopes. Aquaculture 350-353: 8-18. DOI: 10.1016/j.aquaculture.2012.04.030

Hagerthey SE, Cole JJ, Kilbane D. 2010. Aquatic metabolism in the Everglades: Dominance of water column heterotrophy. Limnology and Oceanography 55: 653-666. DOI: 10.4319/lo.2009.55.2.0653

Hakanson L. 2005. Changes to lake ecosystem structure resulting from fish cage farm emissions. Lakes and Reservoirs: Research and Management 10: 71-80. DOI: 10.1111/j.1440-1770.2005.00253.x

Hamilton DP, Carey CC, Arvola L, Arzberger P, Brewer C, Cole JJ, Gaiser E, Hanson PC, Ibelings BW, Jennings E, Kratz TK, Lin FP, McBride CG, Marques D de M, Muraoka K, Nishri A, Qin B, Read JS, Rose KC, Ryder E, Weathers KC, Zhu G, Trolle D, Brookes JD. 2015. A Global lake ecological observatory network (GLEON) for synthesizing high-frequency sensor data for validation of deterministic ecological models. Inland Waters 5: 49-56. DOI: 10.5268/IW-5.1.566

Hanson PC, Carpenter SR, Kimura N, Wu C, Cornelius SP, Kratz TK. 2008. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnology and Oceanography: Methods 6: 454-465. DOI: 10.4319/lom.2008.6.454

Hoellein TJ, Bruesewitz DA, Richardson DC. 2013. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnology and Oceanography 58: 2089-2100. DOI: 10.4319/lo.2013.58.6.2089

Lukman, Sutrisno, Hamdani A. 2014. Fluktuasi oksigen terlarut di kawasan karamba jaring apung di Danau Maninjau dan hubungannya dengan ketersediaan klorofil dan bahan organik. LIMNOTEK Perairan Darat Tropis di Indonesia 21: 30-40

MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD. 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters 37: 2-6. DOI: 10.1029/2010GL044164

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:

Rose KC, Weathers KC, Hetherington AL, Hamilton DP. 2016. Insights from the Global Lake Ecological Observatory Network (GLEON). 476-482. DOI: 10.5268/IW-6.4.1051

Santoso AB, Triwisesa E, Fakhrudin M, Harsono E, Rustini HA. 2018. What do we know about Indonesian tropical lakes? Insights from high frequency measurement. IOP Conference Series: Earth and Environmental Science 118. DOI: 10.1088/1755-1315/118/1/012024

Solomon CT, Bruesewitz DA, Richardson DC, Rose KC, Van de Bogert MC, Hanson PC, Kratz TK, Larget B, Adrian R, Leroux Babin B, Chiu CY, Hamilton DP, Gaiser EE, Hendricks S, Istvá V, Laas A, O’Donnell DM, Pace ML, Ryder E, Staehr PA, Torgersen T, Vanni MJ, Weathers KC, Zhu G. 2013. Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography 58: 849-866. DOI: 10.4319/lo.2013.58.3.0849

Staehr PA, Testa JM, Kemp WM, Cole JJ, Sand-Jensen K, Smith S V. 2012. The metabolism of aquatic ecosystems: History, applications, and future challenges. Aquatic Sciences 74: 15-29. DOI: 10.1007/s00027-011-0199-2

Sulastri, Henny C, Nomosatryo S. 2019. Keanekaragaman fitoplankton dan status trofik Perairan Danau Maninjau di Sumatera Barat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia 5: 242-250. DOI: 10.13057/psnmbi/m050217

Syandri H, Junaidi, Azrita, Yunus T. 2014. State of Aquatic Resources Maninjau Lake West Sumatra Province, Indonesia. Journal of Ecology and Environmental Sciences 5: 109-113

Van De Bogert MC, Bade DL, Carpenter SR, Cole JJ, Pace ML, Hanson PC, Langman OC. 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnology and Oceanography 57: 1689-1700. DOI: 10.4319/lo.2012.57.6.1689

Wanninkhof R. 1992. Relationship between wind speed and gas exchange. Journal of Geophysical Research 97: 7373-7382. DOI: 10.1029/92JC00188



  • There are currently no refbacks.


Masyarakat Limnologi Indonesia


Google Scholar ISJD LIPI Indonesia OneSearch Sinta Indonesia Garuda Indonesia

Copyright &copy 2015-2018, LIMNOTEK. All Rights Reserved. Powered by OJS.