KINERJA PERTUMBUHAN DAN KELANGSUNGAN HIDUP IKAN PATIN PASUPATI (Pangasius sp.) PADA KECEPATAN ARUS BERBEDA

Djamhuriyah Syaikh Said, Novi Mayasari, Nina Hermayani Sadi, Agus Waluyo, Eva Nafisyah

Abstract


Abstrak

Ikan Patin (Pangasius sp.) hidup secara alami di sungai dan memiliki ciri berkulit halus. Pemeliharaan ikan Patin dengan padat tebar yang cukup tinggi membutuhkan sistem pemeliharaan khusus, seperti sistem berarus. Penelitian ini mempelajari pengaruh arus terhadap kinerja pertumbuhan dan kelangsungan hidup ikan Patin Pasupati yang merupakan hasil persilangan antara ikan Patin Siam dengan ikan Patin Jambal. Penelitian dilakukan selama 93 hari (November 2018-Februari 2019) di Laboratorium Akuatik, Pusat Penelitian Limnologi LIPI menggunakan bak fiberglas persegi panjang bervolume 875 L yang dilengkapi dengan sistem resirkulasi. Variasi kecepatan arus yang digunakan yaitu A (0 m/s), B (0,2 m/s), dan C (0,4 m/s). Ikan Patin yang diteliti berukuran panjang dan berat awal 13,64 ± 1,26 (12-14) cm dan 24,41 ± 3,87 (22,07-29.19) g dengan kepadatan awal 40 ekor/bak. Analisis data yang dilakukan secara deskriptif memperlihatkan bahwa perlakuan C memberikan hasil tertinggi pada 90% parameter pertumbuhan ikan yang diamati, yaitu panjang akhir 31,17 ± 0,78 cm, berat akhir 295,72 ± 43,02 g, pertambahan panjang 17,53 ± 0,78 cm, pertambahan berat 271,31 ± 43,02 g, pertumbuhan spesifik (SGR) panjang 0,89 ± 0,03% dan SGR berat 2,68 ± 0,15%, pertumbuhan panjang 0,19 ± 0,01 cm/hari, pertumbuhan berat 2,92 ± 0.46 g/hari, dan kelangsungan hidup (SR) 87,98 ± 10,84%. Namun, nilai rasio konversi pakan (FCR) ketiga perlakuan relatif sama. Kecepatan arus tidak berpengaruh pada nilai FCR dan peningkatan arus tidak diiringi dengan peningkatan jumlah pakan. Penelitian ini belum mendapatkan kecepatan arus optimal untuk pertumbuhan dan kelangsungan hidup ikan Patin Pasupati. Oleh karena itu, penelitian lanjutan diperlukan untuk mengetahui kecepatan arus optimal yang akan menghasilkan pertumbuhan maksimal ikan Patin Pasupati.

Kata kunci: kecepatan arus, pertumbuhan, kelangsungan hidup, ikan Patin Pasupati

Abstract

Growth Performance and Survival of Pangasius Pasupati (Pangasius sp.) at Different Flow Rates. Pangasius is a freshwater fish with a typical delicate skin. A research of water flow effects on growth performance and survival of Pangasius Pasupati has been conducted with three replications in the Laboratory of the Research Center for Limnology LIPI for 93 days (November 2018-February 2019). Pangasius Pasupati is the hybrid of Pangasianodon hypopthalmus and Pangasius djambal. The initial length and weight of fish samples were 13,64 ± 1,26 (12-14) cm and 24,41 ± 3,87 (22.07-29.19) g respectively. Three flow rate treatments were tested, i.e. A (0 m/s as a control), B (0,2 m/s), and C (0,4 m/s). An initial density of 40 fish were reared in a rectangular fiberglass basin filled with 875 L of water using a recirculation system. The data obtained were analyzed descriptively and showed that the treatment C gave the highest yield on 90% of the observed fish growth parameters, which were the final length (31,17 ± 0,78 cm), weight size (295,72 ± 43,02 g), length gain (17,53 ± 0,78 cm), weight gain (271,31 ± 43,02 g), specific growth rate of length (0,89 ± 0,03%), specific growth rate of weight (2,68 ± 0,15%), absolute daily growth of length (0,19 ± 0,01 cm/day), absolute daily growth of weight (2,92 ± 0,46 g/day), and survival rate (87,98 ± 10,84%). However, the feed conversion ratio (FCR) values of the three treatments were relatively the same. The flow rates had no effect on the FCR and an increase in the flow rate was not accompanied by an increase in the amount of feed. This study has not obtained the optimal water flow rate for the growth and survival of Pangasius Pasupati. Therefore, further research is necessary to determine the optimal flow rate that will produce maximum growth of the fish.

Keywords: water flow rate, growth, survival, Pangasius Pasupati


Keywords


water flow rate; survival rate; growth; pasupati catfish

Full Text:

PDF

References


Abedin MJ, Bapary MAJ, Rasul MG, Majumdar BC, Haque MM. 2017. Water quality parameters of some Pangasius ponds at Trishal Upazila, Mymensingh, Bangladesh. European Journal of Biotechnology and Bioscience 5(2): 29–35

Ahmad T, Rusmansyah, Sutrisno. 2008. Performansi calon induk Patin jambal (Pangasius djambal) pada volume bak dan cara aerasi berbeda. Jurnal Riset Akuakultur 3(1): 63–71

Andriyanto S, Listyanto N. 2011. Pertumbuhan dan kelangsungan hidup benih Patin jambal (Pangasius djambal) yang dipelihara dalam sistem resirkulasi dengan kepadatan berbeda. Prosiding Forum Inovasi Akuakultur: 131–136

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. APHA: Washington DC

Barrow PA, Hardy. 2001. Probiotic for chickens. In: Probiotics the scientific basis. R. Filler (Ed). Chapman and Hall. London

Belal IEH. 2015. Effect of water velocity on Tilapia Oreochromis niloticus fingerlings growth parameters and body composition. Journal of Medical and Bioengineering 4(6): 457–460

Chai HJ, Li JH, Huang HN, Li TL, Chan YL, Shiau CY, Wu CJ. 2010. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency. Journal of Biomedicine and Biotechnology: 1–9 doi:10.1155/2010/757301

Cholik F, Jagatraya AG, Poernomo RP, Jauzi A. 2005. Akuakultur, Tumpuan Harapan Masa Depan Bangsa. Masyarakat Perikanan Nusantara dan Taman Akuarium Air Tawar TMII. Jakarta

Dahlan J, Hamzah M, Kurnia A. 2017. Pertumbuhan Udang Vaname (Litopenaeus vannamei) yang dikultur pada sistem bioflok dengan penambahan probiotik. Journal of Fishery Science and Innovation 1(1): 19–27

Darmawan J, Tahapari E. 2017. Performa pertumbuhan, koefisien variasi, dan heterosis hasil persilangan Ikan Patin (Pangasius sp.) pada tahap pendederan II. Jurnal Riset Akuakultur 12(1): 21–28 http://ejournal-balitbang.kkp.go.id/index.php/jra

de Schryver P, Verstraete W. 2009. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reaktors. Bioresource Technology 100: 1162–1167

Diana JS, Fast AW. 1989. The effects of water exchange rate and density on yield of the walking catfish Clarias fuscus. Aquaculture 78(3–4): 267–276 https://doi.org/10.1016/0044-8486(89)90104-X

Friess W. 1998. Collagen–biomaterial for drug delivery. Review Article. European Journal of Pharmaceutics and Biopharmaceutics 45: 113–136 DOI: 10.1016/s0939-6411(98)00017-4

Foo NK. 2010. Feeding and swimming behavior of Patin Pangasius hypophthalmus larvae under dim light condition. Dissertation. Aquaculture Programme School of Science and Technology. University Malaysia Sabah

Hardyanti. 2014. Isolasi kolagen dari kulit ikan Patin (Pangasius sp.). Skripsi. Fakultas Kedokteran Hewan. Institut Pertanian Bogor

Hastuti S, Subandiyono. 2014. Performa produksi ikan lele dumbo (Clarias gariepinus Burch) yang dipelihara dengan teknologi bioflok. Jurnal Saintek Perikanan 10(1): 37–42

Huong LTT, Dzung NH, Tuan PD. 2014. Extraction and purification of collagen from the skins of Basa Fish (Pangasius hypophthalmus). Tap chi Khoa hgc va Cong nghe 52(4): 431–440

Husain MA, Hossain A, Mandal SC, Kabir MA, Rahman MS. 2015. Optimization of feeding frequency on the growth performance of thai pangas, Pangasius hypophthalmus (Sauvage, 1878). Dhaka University Journal of Biological Sciences 24(1): 83–90 DOI: 10.3329/dujbs.v24i1.46312

Hvas M, Damsgaard C, Gam LTH, Huong DTT, Jensen FB, Bayley M. 2016. The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus). Aquatic Toxicology 176:151–60. DOI: 10.1016/j.aquatox.2016.04.020

Jobling M, Baardvik BM, Christiansen JS, Jergensen EH. 1993. The effects of prolonged exercise training on growth performance and production parameter in fish. Aquaculture International 1(2): 95–111 Tanggal diunduh 30 November 2017. https://link.springer.com/article/10.1007/BF00692614

Kottelat M, Whitten AJ, Kartikasari SN, Wirjoatmodjo S. 1993. Ikan Air Tawar Indonesia Bagian Barat dan Sulawesi. Periplus Edition (HK) Ltd. Bekerjasama dengan Proyek EMDI. Kantor Menteri Negara Kependudukan dan Lingkungan Hidup Republik Indonesia. Jakarta

Mercante CTJ, David GS, Rodrigues CJ, do Carmo CF, da Silva RJ. 2018. Potential toxic effect of ammonia in reservoirs with Tilapia culture in cages. International Journal of Fisheries and Aquatic Studies 6(5): 256–261

Nasa DS. 2014. Budidaya Ikan Patin Pangasius djambal. Tanggal diunduh 6 April 2018. http://www.viternaplus.com/2014/09/budidaya-ikan-patin-pangasius-djambal.html

Primashita AH, Rahardja BS, Prayogo. 2017. Pengaruh pemberian probiotik berbeda dalam sistem akuaponik terhadap laju pertumbuhan dan survival rate Ikan Lele (Clarias sp.). Journal of Aquaculture Science 1(1): 1–9 DOI: https://doi.org/10.31093/joas.v1i1.1

Sadi NH. 2016. Inovasi teknologi budidaya dan pakan ikan sidat Anguilla sp. Laporan Akhir Kumulatif Kegiatan Unggulan LIPI Tahun 2016. Bogor. Pusat Penelitian Bioteknologi LIPI

Savitri A, Hasani Q, Tarsim. 2015. Pertumbuhan Ikan Patin Siam (Pangasianodon hypopthalmus) yang dipelihara dengan sistem bioflok pada feeding rate yang berbeda. e-Jurnal Rekayasa dan Teknologi Budidaya Perairan 4(1): 453–460. Tanggal diunduh 31 Oktober 2020. https://jurnal.fp.unila.ac.id/index.php/bdpi/article/view/1351/1242

Schram E, Verdegem MCJ, Widjaja RTOBH, Kloet CJ, Foss A, Schelvis-Smit R, Roth B, Imsland AK. 2009. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810). Aquaculture 292: 46–52

Scruton DA, Pennell CJ, Robertson MJ, Ollerhead LMN, Clarke KD, Alfredsen K, Harby A, McKinley RS. 2005. Seasonal response of juvenile Atlantic salmon to experimental hydropeaking power generation in Newfoundland, Canada. North American Journal of Fisheries Management 25(3): 964–974 doi:10.1577/M04-133.1

Simpson R, Mapleston A. 2002. Movements and habitat use by the endangered Australian freshwater Mary River cod, Maccullochella peelii mariensis. Environ. Biol. Fishes 65(4): 401–410. doi:10.1023/A:1021129021451

Solstorms F, Solstorm D, Oppedal F, Ferno A, Fraser TWK, Olsen RE. 2015. Fast water currents reduce production performance of post-smolt Atlantic salmon Salmo salar. Aquaculture Environment Interactions 7: 125–134 DOI 10.3354/aei00143

SNI 7551: 2009. Produksi ikan patin pasupati (Pangasius sp.) kelas pembesaran di kolam

Sularto, Tahapari E, Hadie W. 2011. Identifikasi Karakter morfometrik sebagai penduga fekunditas Ikan Patin Jambal (Pangasius djambal) faktor kunci untuk seleksi. Jurnal Riset Akuakultur 6(1): 7–16

Sularto, Hadie W, Nurlaela I. 2012. Evaluasi performa pertumbuhan benih Ikan Patin jambal. Prosiding Indoaqua - Forum Inovasi Teknologi Akuakultur 2012, 1037–1044

Sularto, Darmawan J, Nurlaela I, Hadie W. 2014. Evaluasi pertumbuhan dan heritabilitas benih Patin jambal (Pangasius djambal) hasil silang balik F0 Betina dan Jantan F1 pada umur 18 dan 45 hari. Prosiding Forum Inovasi Akuakultur 2014, 771–779

Sun G, Li M, Wang J, Liu Y. 2016. Effects of flow rate on growth performance and welfare of juvenile turbot (Scophthalmus maximus L.) in recirculating aquaculture systems. Aquaculture Research 47(4): 1341–1352 doi:10.1111/are.12597

Supriyadi H, Taukhid, Effendi J. 2003. Identifikasi jasad penyebab penyakit pada benih Ikan Patin Jambal (Pangasius djambal) serta cara penanggulangannya. Jurnal Penelitian Perikanan Indonesia 9(4): 37–41

Suptijah P, Indriani D, Wardoyo SE. 2018. Isolasi dan karakterisasi kolagen dari kulit Ikan Patin (Pangasius sp.). Jurnal Sains Natural Universitas Nusa Bangsa 8(1): 8–23 http://doi.org./10,31398/jsn v8i1.106

Sutomo. 1989. Pengaruh amonia terhadap ikan dalam budidaya sistem tertutup. Oseana 14(1): 19–26

Tahapari E, Darmawan J, Dewi RSPS. 2017. Daya adaptasi tiga spesies Ikan Patin pada lingkungan yang berbeda. Jurnal Riset Akuakultur 12(3): 253–260

Tahapari E, Darmawan J. 2018. Kebutuhan protein pakan untuk performa optimal benih Ikan Patin Pasupati (Pangasiid). Jurnal Riset Akuakultur 13(1): 47–56 DOI: 10.15578/jra.13.1.2018.47-56.

Taylor MK, Cooke SJ. 2012. Meta-analyses of the effects of river flow on fish movement and activity. Environ. Rev. 20: 211–219. doi:10.1139/A2012-009

Vidthayanon C, Hogan Z. 2011. Pangasianodon hypophthalmus, The IUCN Red List of Threatened Species 2011: e,T180689A7649971, Tanggal diunduh 18 Januari 2019 http://dx.doi.org/10.2305/IUCN.UK.2011- 1.RLTS.T180689A7649971.en.

Wagner EJ. 2015. A Review of the Effects of Flow on Brown Trout, Fisheries Experiment Station, Logan, UT 84321 November 2015. Tanggal diunduh 11 Januari 2019. https://wildlife.utah.gov/fes/pdf/review-effects_of_flow_on_brown_trout_redds.pdf

Waldrop T, Summerfelt S, Mazik P, Good C. 2018. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic Salmon Salmo salar. Aquaculture Research 49: 801–808. DOI: 10.1111/are.13511




DOI: http://dx.doi.org/10.14203/limnotek.v27i2.314

Refbacks

  • There are currently no refbacks.


PUBLISHED IN COLLABORATION WITH

Masyarakat Limnologi Indonesia

ABSTRACTED/INDEXED BY

Google Scholar ISJD LIPI Indonesia OneSearch Sinta Indonesia Garuda Indonesia


Copyright &copy 2015-2018, LIMNOTEK. All Rights Reserved. Powered by OJS.